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Stability of compacton solutions
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The stability of the recently discovered compacton solutions is studied by means of both linear stability
analysis as well as Lyapunov stability criteria. From the results obtained it follows that, unlike solitons, all the
allowed compacton solutions are stable, since the stability condition is satisfied for arbitrary values of the
nonlinearity parameter. The results are shown to be true even for the higher order nonlinear dispersion equa-
tions for compactons. Some conservation laws for the higher order nonlinear dispersion equations are also
presented.@S1063-651X~98!50909-9#

PACS number~s!: 03.40.Kf, 52.35.Sb, 63.20.Ry
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The observed stationary and dynamical patterns in na
are usually finite in extent. However, most of the weak
nonlinear and linear dispersion equations studied so far
mit solitary waves that are infinite in extent, although loc
ized in nature. Therefore, the recently discovered compa
solutions~i.e., solitary waves with compact support! of the
nonlinear dispersiveK(m,n) equations have become ve
important from the point of study of the effect of nonline
dispersion on pattern formation as well as the formation
nonlinear structures such as liquid drops, etc. The compa
speed depends on its height, but unlike the solitons, its w
is independent of the speed, a fact that seems to play a
crucial role in its stability property. Compactons have t
remarkable solitonlike property that they collide elastical
However, unlike soliton collisions in an integrable system
the point at which two compactons collide is marked by
creation of low amplitude compacton-anticompacton pa
@1,2#. In fact, it is now known that theK(m,n) system of
equations is not integrable@1,2#. This suggests that the ob
served almost-elastic collisions of the compactons are p
ably not due to the integrability and thus the mechani
responsible for the coherence and robustness of the com
tons remains a mystery. Stability analysis of the compac
solutions may provide some clues in this direction. As h
been said above, the stability of the compactons is crucia
the context of its applications in the study of pattern form
tion. Besides, the stability problem of theK(m,n) equations
is interesting because, for such equations with higher po
of nonlinearity and nonlinear dispersion, the phenomenon
collapse is possible. Also, in the context of soliton equatio
from the stability analysis it has been shown that the hig
order linear dispersion term stabilizes the solitons@3,4#. In
this regard it will be of interest to see what role the high
order nonlinear dispersion term plays with respect to the
bility of the compacton solutions of theK(m,n) type equa-
tions.

In this Rapid Communication we report on the stabil
analysis of the compacton solutions of the nonlinear disp
sion K(m,n) type equations as considered by Cooperet al.
@2#. We use both the linear stability analysis and t
Lyapunov stability criteria to analyze the problem. We st
with the K( l ,p) equation:
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1p~p21!up22ux
3#50. ~1!

These equations have the same terms as theK(m,n) equa-
tions considered by Rosenauet al. @1#, but the relative
weights of the terms are different, leading to the fact th
whereas theK( l ,p) equation@Eq. ~1!# can be derived from a
Lagrangian, theK(m,n) equation considered in@1# does not
have a Lagrangian. For the sake of comparison, it may
noted that the set of parameters (m,n) in @1# corresponds to
the set (l 21,p11) in Eq. ~1! @2#. Assuming a solution to
Eq. ~1! in the form of a traveling waveu(x,t)5u(j), where
j5x2Dt, Eq. ~1! reduces to the sameK( l ,p) equations
considered by Cooperet al. @Eq. ~7! in @2## for the compac-
ton solutions. The compacton solutions to Eq.~1! are given
by @2#,

uc~j!5FD

2
~p11!~p12!G ~1/p!

3cos~2/p!F pj

2Aa~p11!~p12!
G , ~2!

in case l 5p12, 0,p<2, and for uju
<(p/p)Aa(p11)(p12); uc(j) is zero otherwise. Note
that the width of the compacton is independent of its sp
~amplitude!. The fact that the width of the compacton wi
always be independent of its amplitude in casel 5p12 fol-
lows from the invariance of Eq.~1! under the scaling trans
formationx→ax, t→bt, u→gu. We now consider the sta
bility of these compacton solutions.

~i! Linear stability. Equation~1! can be obtained from the
variational principled(H1DP)50. Using the relations

I n5E
2`

1`

undx, J25E
2`

1`

upux
2dx, ~3!

we can write the corresponding conserved Hamiltonian
momentum as
R2741 © 1998 The American Physical Society
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Hc5aJ22
I p12

~p11!~p12!
, Pc5

1

2
I 2 . ~4!

Using Eq. ~1! and the equation obtained from the scali
transformationx→bx, we get

I p12

~p11!~p12!
5

~41p!DPc

2~p12!
, aJ25

pDPc

2~p12!
~5!

so thatHc522DPc /(p12). Considering the general sca
ing transformationu→m1/2u(lx), Hc and Pc are trans-
formed toH(l,m) andP(l,m) and we get

F~l,m!5alm~p12!/2J22
m~p12!/2

l~p11!~p12!
I p121

m

l
DPc ,

~6!

where F(l,m)5H(l,m)1DP(l,m). The equations
]F/]l5]F/]m50 gives the stationary point atl5m51
~compacton equation! and near this point, using the Taylo
series form5l we get~the transformation in that case do
not change the momentumP)

d~2!F~l!5d~2!H~l!

5~l21!2Fa~p12!~p14!J2

8

2
p~p22!~p14!DPc

16~p12! G , ~7!

which has a definite sign. If it is positive~negative! the ex-
pression

H~l!5al@~p14!/2#J22
l~p/2!~p14!DPc

2~p12!
~8!

has a minimum~maximum! at l51.
Now, let us assume thatu5uc1v, whereuvu!1 and the

scalar product (uc ,v)50. Substituting this in Eq.~1! after
linearization we get

]Tv5]jL̂v, ~9!

wherej5x2Dt andT5t and the operatorL̂ is given by

L̂5@D2ul 2222apup21u2j22aup]j
2

2ap~p21!u~p22!uj
222apu~p21!uj]j#. ~10!

One can now run through the steps as given by Karpman@3#
@see Eqs.~29!–~32!# and show that as in his case, in our ca
the sufficient condition for stability is that the scalar produ
(c,L̂c).0, where the operatorL̂ is given by Eq.~10!, while
c is a function in the subspace orthogonal touc . However,
condition (c,L̂c).0 is also associated with the extremu
of H1DP since, using the relationd(H1DP)50, one can
show that the second variation ofH(u) andP(u) at u5uc is
given by

d~2!~H1DP!uc
5

1

2 E
2`

1`

~v,L̂v !dj.0, ~11!
e
t

where the operatorL̂ is given by Eq.~10!. That is, if the
condition (c,L̂c).0 is fulfilled, thenH(u)1DP(u) has a
minimum at u5uc . Inversely, the minimum ofH(u)
1DP(u) at u5uc is a sufficient condition of compacto
stability with respect to small perturbation. Using Eq.~8! we
obtain the condition for the minimum of the perturbe
HamiltonianH(l) at l51 asp12.p22, which is obvi-
ously true for anyp. Thus, we see that the condition for th
Hamiltonian minimum~and hence the sufficient conditio
for the compacton stability! is satisfied for arbitrary values o
the nonlinear parameterp. This is unlike the soliton stability
results, where it has been shown that the stability condit
puts a restriction on the allowed values of the nonlinear
rameter@3,4,6#. Note, however, that compacton solutions e
ist only for p<2.

In the same-way as Karpman@3#, one can show that the
sufficient condition (c,L̂c).0 is also equivalent to the con
dition

S ]Pc

]D D.0. ~12!

From Eqs.~2! and~4! one can easily show that the sufficie
condition for compacton stability@Eq. ~12!# is satisfied for
arbitrary values of the nonlinearity parameterp. It should be
noted that this result is completely in contrast to the us
soliton stability results. It is not difficult to see why this is s
for the compactons. From Eq.~2! we see that the width o
the compacton solutions is independent of its speed~ampli-
tude! D, and the generic form of such compactons isuc(j)
5ADb cos(cj), where the constantsA, b, andc depend on
the nonlinearity parameter. HencePc5D2bK, whereK is D
independent. Therefore,dP/dD.0 trivially sinceb.0. On
the other hand, if the width depends on speed~as in the case
of solitons @3,4#! with the generic form of the solution a
u(j)5ADb cos(cDaj), then dP/dD.0 only if 2b.a,
which will depend on the particular theory~soliton equa-
tions!. It should be noted that the above stability conditi
@Eq. ~12!# is obtained by assuming that there is only one -
eigenvalue for the operatorL̂ @Eq. ~10!#. The validity of this
conjecture has been proven from numerical experiments
many other systems, such as the third and fifth or
Korteweg–de Vries equations as well as the nonlinear Sc¨-
dinger equations@3#. At present we do not have any eviden
to show that this conjecture is also valid for our operatorL̂
@Eq. ~10!#, except for the fact that the result that follows fro
using this conjecture also agrees with the result obtai
from the Hamiltonian minimum condition@Eq. ~11!#, as well
as an independent analysis of the stability by the Lyapu
method as shown below.

These results are also true for the higher order disper
equations. For example, consider the fifth order nonlin
dispersion equationsK(m,n,p) @5,7# for the compactons.
The Hamiltonian for such system is, respectively, given
@5#

Hc5E
2`

1`Fd um11

~m11!
1aun21ux

21bup23ux
41gup21u2x

2 Gdx

~13!
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and @7#

Hc5E
2`

1`Fbumux
22a

up12

~p11!~p12!
2

g

2
unux

l u2x
2 Gdx.

~14!

As has been shown in@5#, the compacton solutions corre
sponding to the Hamiltonian in Eq.~13! are allowed for the
nonlinearity parameterk5m5n5p in the range 2<k<5,
thereby meaning that the effect of the higher order nonlin
dispersion term is to increase the range of the nonlinea
parameter for which the compacton solutions are allow
Considering the small perturbationu5uc1v as before, we
can show that@8# even for these higher order nonlinear d
persion equations, the sufficient conditions for the comp
ton stability as given by Eqs.~11! and ~12! are satisfied for
arbitrary values of the nonlinear parameterk.

~ii ! Lyapunov stability. The above theory of linear stab
ity analysis for the compactons is based on the lineariza
of equations for compacton perturbations. This method
some inherent limitations connected with the linearizati
Therefore, we present another approach to the stability p
lem based on the Lyapunov method, which, instead of
earization, uses sharp estimates. The effectiveness of
method has been demonstrated by Weinstein@9# and Karp-
manet al. @10#. In this method of analysis, it is sufficient t
prove that the Hamiltonian is bounded from below for fix
momentumP and the compacton realizes the Hamiltoni
minimum. Here we consider the stability of the compact
solution of Eq.~1!. From Eq.~3!, we have

I p12<~max u~p14!/2!~2p!/~p14!E u2dx. ~15!

Also,

max~u~p14!/2!<
p14

2 E uup/2uxuuuudx. ~16!

Using Holder’s inequality, we get

max~u~p14!/2!<
p14

2 F E upux
2dxG1/2F E u2dxG1/2

<
p14

2
J2

1/2~2P!1/2. ~17!

From Eqs.~4! we then have

H>min
J2

FaJ22
1

~p11!~p12! S p14

2 D ~2p!/~p14!

3J2
p/~p14!~2P!~2p14!/~p14!G . ~18!

ThusH is bounded from below. On calculating the minimu
of the right hand side, we findHmin52(4/p)aJ2 Thus we
see thatH is bounded from below for arbitrary values of th
nonlinearity parameterp. Now, from Eqs.~4! and~5! we can
immediately see thatHc5Hmin52(2DPc)/(p12), i.e., the
compacton realizes the Hamiltonian minimum and hence
proves the stability of the compacton solutions in t
ar
ty
d.

c-

n
s
.
b-
-
his

n

is

Lyapunov sense. Thus, the Lyapunov stability analy
shows that all the allowed compacton solutions~i.e., p<2)
are stable, since the condition for boundedness of the Ha
tonian andHc5Hmin are valid for arbitrary values of the
nonlinearity parameterp. It can be shown that@8# we also
get similar results from the Lyapunov stability analysis of t
higher order nonlinear dispersion equation as given by
Hamiltonians in Eqs.~13! and ~14!.

Before concluding, we would like to mention that in ou
earlier paper@5# we had reported only one conservation la
for the higher orderK(m,n,p) equations given by@Eq. ~2! in
@5##

ut1b1~um!x1b2~un!3x1b3~up!5x50, m,n,p.1.
~19!

We now find that, like theK(m,n) equations as considere
by Rosenauet al. @1#, the higher orderK(m,n,p) equations
also have four conservation laws form5n5p, with the
same conserved quantities as for theK(m,n) equations, i.e.,

Q15u, Q25um11, Q35u cosx, Q45u sin x.
~20!

We have checked that even for the seventh order nonlin
dispersionK(m,m,m,m) equation@see Eq.~53! in @5## there
are four conservation laws as above. We suspect that e
the generalized arbitrary odd-order nonlinear dispers
K(m,m,m,m, . . . ) equations@see Eq.~36! in @5## may also
support similar four conservation laws. However, it shou
be noted that for theK( l ,p) equation@Eq. ~1!# and its cor-
responding higher orderK(m,n,p) equation @Eqs. ~13!,
~14!#, which are derivable from a Lagrangian and whose s
bility problem is considered here, there are only three c
servation laws@2,5#.

To conclude, we would like to point out the importa
difference between the soliton and compacton solutions
obtained from the stability analysis of such solution
Whereas the soliton solutions are allowed for arbitrary val
of the nonlinear parameter, the stability condition on the s
ton solutions puts restrictions on the nonlinearity parame
for which stable soliton solutions are allowed@3,4,6,10#. On
the other hand, the compacton solutions are allowed o
within a certain range of the nonlinear parameter~the range
is determined from the condition of the finite derivative
the compacton solutions at the edges@2,5#! and all the al-
lowed compacton solutions~within this allowed range of the
nonlinear parameter! are stable. Unlike soliton solutions, th
stability of the compacton solutions does not put any ad
tional constraint on the range of the nonlinear parame
This result is true even for the higher order nonlinear disp
sion equations for compactons, whereas for the soliton c
the higher order linear dispersion term stabilizes the solit
with a higher power of nonlinearity. It may be noted that w
are unable to discuss the question of the stability of the co
pacton solutions as considered by Rosenauet al. @1# since
their compacton equations cannot be derived from a
grangian. However, we suspect that their compacton s
tions will also be stable. It would be nice if this could b
shown in general.
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