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Stability of compacton solutions
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The stability of the recently discovered compacton solutions is studied by means of both linear stability
analysis as well as Lyapunov stability criteria. From the results obtained it follows that, unlike solitons, all the
allowed compacton solutions are stable, since the stability condition is satisfied for arbitrary values of the
nonlinearity parameter. The results are shown to be true even for the higher order nonlinear dispersion equa-
tions for compactons. Some conservation laws for the higher order nonlinear dispersion equations are also
presented[S1063-651X98)50909-9

PACS numbsgs): 03.40.Kf, 52.35.Sb, 63.20.Ry

The observed stationary and dynamical patterns in nature Ug+ Uy ' =2+ o 2Ug,uP+ 4puP~ LU Uy
are usually finite in extent. However, most of the weakly .
nonlinear and linear dispersion equations studied so far ad- +p(p—1)uP~2ui]=0. (0]

mit solitary waves that are infinite in extent, although local-

ized in nature. Therefore, the recently discovered compactomhese equations have the same terms aifme,n) equa-
solutions(i.e., solitary waves with compact suppodf the  tions considered by Rosenaet al. [1], but the relative
nonlinear dispersive<(m,n) equations have become very weights of the terms are different, leading to the fact that,
important from the point of study of the effect of nonlinear yhereas th& (1,p) equationEq. (1)] can be derived from a
dispersion on pattern formation as well as the formation OfLagrangian, theék (m,n) equation considered ifi] does not
nonlinear structures such as liquid drops, etc. The compactof,ye 5 Lagrangian. For the sake of comparison, it may be

sp_eed depends on its height, but unlike the solitons, its Wid”ﬁoted that the set of parameters, (1) in [1] corresponds to
is independent of the speed, a fact that seems to play a Vel¥s set (—1p+1) in Eq. (1) [2]. Assuming a solution to

crucial role in its stability property. Compactons have the . .
L - - Eqg. (1) in the form of a traveling wave(x,t)=u(¢), where
remarkable solitonlike property that they collide elast|cally.§:X_Dt, Eq. (1) reduces to the sami(l,p) equations

However, unlike soliton collisions in an integrable systems, . .
the point at which two compactons collide is marked by theconsidered by Coopest al. [Eq. (7) in [2]] for the compac-

creation of low amplitude compacton-anticompacton pairdOn solutions. The compacton solutions to Ef). are given
[1,2]. In fact, it is now known that th&(m,n) system of by [2],
equations is not integrabld,2]. This suggests that the ob-

served almost-elastic collisions of the compactons are prob- _|D (1)

ably not due to the integrability and thus the mechanism Ue(&)= E(p+1)(p+2)

responsible for the coherence and robustness of the compac-

tons remains a mystery. Stability analysis of the compacton 42 pé

solutions may provide some clues in this direction. As has Xco 2\Jap+t1)(p+2)| @
been said above, the stability of the compactons is crucial in

the context of its applications in the study of pattern forma—in case l=p+2, 0<p<2, and for €]

tion. Besides, the stability problem of tigm,n) equations < (m/p)Ja(pT D) (p+2); u (&) is zero otherwise. Note

is interesting because, for such equations with higher powe?_‘at the width of the compacton is independent of its speed

of nonlm_eanty a_nd nonlme_ar dispersion, the p_henomen(_)n 0 amplitude. The fact that the width of the compacton will
collapse is possible. Also, in the context of soliton equations . . . .
always be independent of its amplitude in chsep+ 2 fol-

from the stabi!ity anglysis it has bgen shown that the higherows from the invariance of Eq1) under the scaling trans-
order linear dispersion term stabilizes the solit¢8gl]. In formationx— ax, t— Bt, U—yu. We now consider the sta-
this regard it will be of interest to see what role the higherbiIity of these C(;mpactén SO|)L/Jti.OnS

order nonlinear dispersion term plays with respect to the sta- (i) Linear stability. Equatior1) Ca'n be obtained from the

tti)glrtl); of the compacton solutions of thé(m,n) type equa- variational principles(H+DP)=0. Using the relations

In this Rapid Communication we report on the stability o o
analysis of the compacton solutions of the nonlinear disper- 'n:f undx, Jzzf uPuZdx, 3
sion K(m,n) type equations as considered by Cooptal.

[2]. We use both the linear stability analysis and the
Lyapunov stability criteria to analyze the problem. We startwe can write the corresponding conserved Hamiltonian and
with the K(I,p) equation: momentum as

— o0 —
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where the operatot is given by Eq.(10). That is, if the

condition (,L)>0 is fulfilled, thenH(u)+DP(u) has a
minimum at u=u.. Inversely, the minimum ofH(u)

Using Eq.(1) and the equation obtained from the scaling  pp(u) at u=u, is a sufficient condition of compacton

transformatiorx— 8x, we get

lpsa _ (4+p)DP,

(p+1)(p+2)  2(p+2) °

_ pDP,
427 2(p+2)

(5

so thatH,=—2DP_./(p+2). Considering the general scal-

ing transformationu— u*2u(Ax), H, and P, are trans-

formed toH(\,u) andP(\,u) and we get

u(P+2)12 “
= (p+2)2y & -
DN, u)=alu Js )\(p+l)(p+2)|p+2+)\DPC'
(6)
where ®(\,u)=H(\,u)+DP(\,n). The equations

IP/IN=0DP/Iu=0 gives the stationary point at=pu=1

(compacton equatigrand near this point, using the Taylor
series foru=\ we get(the transformation in that case does

not change the momentum)
SPDd(N)=6PH(\)
a(p+2)(p+4)J;
8

_ p(p—2)(p+4)DP,
16(p+2)

which has a definite sign. If it is positivenegative the ex-
pression

=(\—1)?

. (@)

AP2(p+4)DP,

H(\)=anl(PT472)3,— 0T 2)

(€S)
has a minimummaximun) at A =1.

Now, let us assume that=u.+v, where|v|<1 and the
scalar product . ,v)=0. Substituting this in Eq(1) after
linearization we get

(9TU=¢9§|:U, (9

where&é=x—Dt andT=t and the operatot is given by

L=[D—u""2=2apuP tuy—2auPd;
—ap(p—1uP~Pui-2apu® Yugd]. (10

One can now run through the steps as given by Karpf8an

stability with respect to small perturbation. Using E8). we
obtain the condition for the minimum of the perturbed
HamiltonianH(\) atA=1 asp+2>p—2, which is obvi-
ously true for anyp. Thus, we see that the condition for the
Hamiltonian minimum(and hence the sufficient condition
for the compacton stabili}yis satisfied for arbitrary values of
the nonlinear parameter. This is unlike the soliton stability
results, where it has been shown that the stability condition
puts a restriction on the allowed values of the nonlinear pa-
rametel3,4,6]. Note, however, that compacton solutions ex-
ist only for p<2.

In the same-way as Karpmdf], one can show that the
sufficient condition ¢,L ¢) >0 is also equivalent to the con-

dition
P
( D )>0.

From Eqgs.(2) and(4) one can easily show that the sufficient
condition for compacton stabilitjyEq. (12)] is satisfied for
arbitrary values of the nonlinearity paramegerlt should be
noted that this result is completely in contrast to the usual
soliton stability results. It is not difficult to see why this is so
for the compactons. From E@R) we see that the width of
the compacton solutions is independent of its sp@adpli-
tude D, and the generic form of such compactonsii§¢)
=ADP cosgé), where the constants, b, andc depend on
the nonlinearity parameter. HenBe=D?°K, whereK is D
independent. Therefore,P/dD>0 trivially sinceb>0. On
the other hand, if the width depends on spéeslin the case
of solitons[3,4]) with the generic form of the solution as
u(é€)=ADP coseD?*), then dP/dD>0 only if 2b>a,
which will depend on the particular theorfgoliton equa-
tiong). It should be noted that the above stability condition
[Eqg. (12)] is obtained by assuming that there is only one -ve

eigenvalue for the operatdr [Eq. (10)]. The validity of this
conjecture has been proven from numerical experiments for
many other systems, such as the third and fifth order
Korteweg—de Vries equations as well as the nonlinear Schro
dinger equationg3]. At present we do not have any evidence

to show that this conjecture is also valid for our operdtor
[Eq. (10)], except for the fact that the result that follows from
using this conjecture also agrees with the result obtained
from the Hamiltonian minimum conditiofEq. (11)], as well

(12

[see Eqs(29)—(32)] and show that as in his case, in our caseas an independent analysis of the stability by the Lyapunov
the sufficient condition for stability is that the scalar productmethod as shown below.

(4,Ly)>0, where the operatdr is given by Eq(10), while
¢ is a function in the subspace orthogonaluto. However,

condition (4,L#)>0 is also associated with the extremum

of H+DP since, using the relatiod(H +DP)=0, one can
show that the second variation d{u) andP(u) atu=u, is
given by

5?(H+DP), = % f+w(v.£v)d§>0- (11)

— o0

These results are also true for the higher order dispersion
equations. For example, consider the fifth order nonlinear
dispersion equation&(m,n,p) [5,7] for the compactons.
The Hamiltonian for such system is, respectively, given by

(5]

+ oo
w1

um+1

(m+1)

-1,,2 -3,,4 -1,,2
+au" " tug+ BuPT Ul + yuP T us, |dx

(13
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and[7] Lyapunov sense. Thus, the Lyapunov stability analysis

shows that all the allowed compacton solutidns., p<2)

H.— f*‘” are stable, since the condition for boundedness of the Hamil-

¢ )w tonian andH.=H,,, are valid for arbitrary values of the
(14)  nonlinearity parametep. It can be shown thdi8] we also
) ) get similar results from the Lyapunov stability analysis of the

As has been shown ifb], the compacton solutions corre- higher order nonlinear dispersion equation as given by the

sponding to the Hamiltonian in E¢13) are allowed for the  {amjitonians in Eqs(13) and (14).

nonlinearity parametek=m=n=p in the range k<=5, Before concluding, we would like to mention that in our

dispersion term is to increase the range of the nonlinearityor the higher ordeK (m,n,p) equations given bjEg. (2) in

parameter for which the compacton solutions are aIIowedE5]]

Considering the small perturbatiar=u.+v as before, we

can show thaf8] even for these higher order nonlinear dis- m n _

persion equations, the sufficient conditions for the compac- Uy Ba(UT)x+ Bo(U") ax+ Ba(UP)sx=0, m,n,p>1.(19)

ton stability as given by Eqg11l) and(12) are satisfied for

arbitrary values of the nonlinear parameker , . : .

(i) Lyapunov stability. The above theory of linear stabil- & oW find that, like the<(m,n) equations as considered

ity analysis for the compactons is based on the Iinearizatiorl?y Rosenacet al. [1], the h!gher ordeK(m,n,p) eqyauons

of equations for compacton perturbations. This method ha@'ls0 have four conseryahon laws fen=n=p, ‘.N'th the

some inherent limitations connected with the linearizationS@Me conserved quantities as for tgm,n) equations, i.e.,

Therefore, we present another approach to the stability prob-

lem based on the Lyapunov method, which, instead of lin- _ —m+1 — —11 i

earization, uses sharp estimates. The effectiveness of this Qu=u, Q=uT"%  Qg=ucosx, Qu=usin X(.ZO)

method has been demonstrated by Weinsi@inand Karp-

manet al.[10]. In this method of analysis, it is sufficient to

prove that the Hamiltonian is bounded from below for fixed . ! ) .
momentumP and the compacton realizes the Hamiltoniand'SperS'orK(m’m’m’m) equationsee Eq(53) in [5]] there

g~ . - are four conservation laws as above. We suspect that even
minimum. Here we consider the stability of the compacton . : ; . .
. the generalized arbitrary odd-order nonlinear dispersion
solution of Eq.(1). From Eq.(3), we have

K(m,m,m,m, ...) equationgdsee Eq(36) in [5]] may also
support similar four conservation laws. However, it should
I p+2=(max U(pM)/Z)(Zp)/(pM)f u?dx. (15  be noted that for th&(I,p) equation[Eq. (1)] and its cor-
responding higher ordeK(m,n,p) equation [Egs. (13),
Also, (14)], which are derivable from a Lagrangian and whose sta-
bility problem is considered here, there are only three con-
servation lawg2,5].

To conclude, we would like to point out the important
difference between the soliton and compacton solutions as
Using Holder’s inequality, we get obtained from the stability analysis of such solutions.
Whereas the soliton solutions are allowed for arbitrary values

We have checked that even for the seventh order nonlinear

+4
ma>(u(p*4)’2)$p7 f [uP2u,||uldx. (16)

max(uP+472) < w J’ uPu2dx 12 f u2dx vz of the nonlinear paramgter, the stability conditio_n on the soli-
2 X ton solutions puts restrictions on the nonlinearity parameter

for which stable soliton solutions are allowggi4,6,17. On
<ﬂ‘]1/2(2p)1,2 17) the other hand, the compacton solutions are allowed only

-2 72 ' within a certain range of the nonlinear parametbe range

is determined from the condition of the finite derivative of
From Egs.(4) we then have the compacton solutions at the eddé@ss]) and all the al-
(2p)(p+4) Iowe_d compacton solutior(gvithin th_is allowed range of the
1 p+4) nonlinear parametgare stable. Unlike soliton solutions, the
(p+1)(pt+2) | 2 stability of the compacton solutions does not put any addi-
tional constraint on the range of the nonlinear parameter.
This result is true even for the higher order nonlinear disper-
sion equations for compactons, whereas for the soliton case
the higher order linear dispersion term stabilizes the solitons
ThusH is bounded from below. On calculating the minimum with a higher power of nonlinearity. It may be noted that we
of the right hand side, we fin#li ,,,=—(4/p)aJ, Thus we are unable to discuss the question of the stability of the com-
see thaH is bounded from below for arbitrary values of the pacton solutions as considered by Roseraal. [1] since
nonlinearity parametgrs. Now, from Eqs(4) and(5) we can  their compacton equations cannot be derived from a La-
immediately see thaH.=H;,=—(2DP.)/(p+2), i.e., the grangian. However, we suspect that their compacton solu-
compacton realizes the Hamiltonian minimum and hence thisons will also be stable. It would be nice if this could be
proves the stability of the compacton solutions in theshown in general.

H=min
Ja

an—

xJg/(p+4)(2p)(2p+4)/(p+4) ) (18




RAPID COMMUNICATIONS

R2744 BISHWAJYOTI DEY AND AVINASH KHARE PRE 58

[1] P. Rosenau and J. M Hyman, Phys. Rev. L&#.564 (1993; [5] B. Dey, Phys. Rev. K57, 4733(1998.

P. Rosenau, Phys. Lett. 230, 305(1997. [6] E. A. Kuznetsov, Phys. Letl01, 314(1984.
[2] F. Cooper, H. Shepard, and P. Sodano, Phys. Re¥8E [7] F. Cooper, J. M. Hyman, and A. Khare, e-print Patt-Sol/
4027 (1993; A. Khare and F. Cooperjbid. 48, 4843 9704003.
(1993. [8] The details of the calculations will be reported elsewhere.
[3] V. I. Karpman, Phys. Lett. 210 77 (1996. [9] M. I. Weinstein, Commun. Math. Phy87, 567 (1983.

[4] B. Dey, A. Khare, and C. N. Kumar, Phys. Lett. 223 449  [10] V. I. Karpman, Phys. Lett. 215 254(1996, and references
(1996. therein.



